On the Kauffman Skein Modules
نویسندگان
چکیده
Abstract. Let k be a subring of the field of rational functions in α, s which contains α, s. Let M be a compact oriented 3-manifold, and let K(M) denote the Kauffman skein module of M over k. Then K(M) is the free k-module generated by isotopy classes of framed links in M modulo the Kauffman skein relations. In the case of k = Q(α, s), the field of rational functions in α, s, we give a basis for the Kauffman skein module of the solid torus and a basis for the relative Kauffman skein module of the solid torus with two points on the boundary. We then show that K(S × S) is generated by the empty link, i.e., K(S × S) ∼= k.
منابع مشابه
Fundamentals of Kauffman bracket skein modules
Skein modules are the main objects of an algebraic topology based on knots (or position). In the same spirit as Leibniz we would call our approach algebra situs. When looking at the panorama of skein modules1, we see, past the rolling hills of homologies and homotopies, distant mountains the Kauffman bracket skein module, and farther off in the distance skein modules based on other quantum inva...
متن کاملThe Kauffman Skein Module of the Connected Sum of 3-manifolds
Let k be an integral domain containing the invertible elements α, s and 1 s−s −1 . If M is an oriented 3-manifold, let K(M) denote the Kauffman skein module of M over k. Based on the work on Birman-Murakami-Wenzl algebra by Beliakova and Blanchet [2], we give an “idempotent-like” basis for the Kauffman skein module of handlebodies. Gilmer and Zhong [6] have studied the Homflypt skein modules of...
متن کاملON THE KAUFFMAN BRACKET SKEIN MODULE OF SURGERY ON A (2, 2b) TORUS LINK
We show that the Kauffman bracket skein modules of certain manifolds obtained from integral surgery on a (2, 2b) torus link are finitely generated, and list the generators for select examples.
متن کاملKauffman bracket skein module of a connected sum of 3-manifolds
We show that for the Kauffman bracket skein module over the field of rational functions in variable A, the module of a connected sum of 3-manifolds is the tensor product of modules of the individual manifolds.
متن کاملThe skein module of torus knots complements
We compute the Kauffman skein module of the complement of torus knots in S3. Precisely, we show that these modules are isomorphic to the algebra of Sl(2, C)-characters tensored with the ring of Laurent polynomials. Skein modules were introduced indenpendantly by V. Turaev in 1988 and J. Przytycki in 1991 (see [TU88, HP92]) as a C[A±1]-module associated to a 3-manifold M generated by banded link...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008